Hyers-Ulam stability of first-order homogeneous linear differential equations with a real-valued coefficient

نویسندگان

  • Masakazu Onitsuka
  • Tomohiro Shoji
چکیده

This paper is concerned with the Hyers–Ulam stability of the first-order linear differential equation x′ − ax = 0, where a is a non-zero real number. The main purpose is to find an explicit solution x(t) of x′−ax = 0 satisfying |φ(t)−x(t)| ≤ ε/|a| for all t ∈ R under the assumption that a differentiable function φ(t) satisfies |φ′(t)− aφ(t)| ≤ ε for all t ∈ R. In addition, the precise behavior of the solutions of x′ − ax = 0 near the function φ(t) is clarified on the semi-infinite interval. Finally, some applications to nonhomogeneous linear differential equations are included to illustrate the main result. © 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximately $n$-order linear differential equations

We prove the generalized Hyers--Ulam stability  of $n$-th order linear differential equation of the form $$y^{(n)}+p_{1}(x)y^{(n-1)}+ cdots+p_{n-1}(x)y^{prime}+p_{n}(x)y=f(x),$$ with condition that there exists a non--zero solution of corresponding homogeneous equation. Our main results extend and improve the corresponding results obtained by many authors.

متن کامل

Hyers–ulam Stability of Linear Differential Equations with Vanishing Coefficients

We establish the Hyers-Ulam stability of certain first-order linear differential equations where the coefficients are allowed to vanish. We then extend these results to higher-order linear differential equations with vanishing coefficients that can be written with these first-order factors. AMS (MOS) Subject Classification. 34A30, 34A05, 34D20.

متن کامل

A Characterization of the Stability of a System of the Banach Space Valued Differential Equations

We will consider the Banach space valued differential equation y′(t) = Ay(t) , where A is an n× n complex matrix. We give a necessary and sufficient condition in order that the equation have the Hyers-Ulam stability. As a Corollary, we prove that the Banach space valued linear differential equation with constant coefficients y(n)(t) + an−1y(n−1)(t) + · · ·+ a1y′(t) + a0y(t) = 0 has the Hyers-Ul...

متن کامل

Hyers-ulam stability of exact second-order linear differential equations

* Correspondence: baak@hanyang. ac.kr Department of Mathematics, Research Institute for Natural Sciences, Hanyang University, Seoul 133-791, South Korea Full list of author information is available at the end of the article Abstract In this article, we prove the Hyers-Ulam stability of exact second-order linear differential equations. As a consequence, we show the Hyers-Ulam stability of the fo...

متن کامل

Hyers-Ulam stability of linear partial differential equations of first order

In this work, we will prove the Hyers–Ulam stability of linear partial differential equations of first order.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Appl. Math. Lett.

دوره 63  شماره 

صفحات  -

تاریخ انتشار 2017